Abstract
Hydrodynamic and thermal stability of combined thermal buoyancy and lid-driven shear flow in a shallow cavity is analyzed by means of linearized perturbation theory. The analysis considers a cavity heated from below and cooled at the upper moving lid. A numerical procedure, which has generality with respect to boundary conditions, Reynolds, and Prandtl numbers, is described for solution of the linearized model equations. A direct numerical integration (Runge-Kutta with Newton-Raphson) method is used to solve the differential conservation equations. This method gives an exact result for the classical Benard problem where the flow becomes unstable at a critical Rayleigh number, Ra c = 1707.76. The numerical results show the existence of two critical wave numbers depending on whether the dominant force driving the flow is due to buoyancy or shear. For Pr ⩽ 0.1 the instability is due to the buoyancy force for constant heat flux boundary conditions, while for Pr = 1 the instability is due to the shear force. Increasing the Reynolds number stabilizes the flow, and reducing the Prandtl number makes the flow more unstable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.