Abstract

To make use of the merit of designability, each lamina in layered structures may possess diverse materials and geometry to realize specific application. For the hybridized structures, geometry and material properties relative to the middle surface are generally unsymmetrical, which have a significant impact on stability. Some models might lose capability to deal with such issues, so that these issues are less reported. Within the developed models, Reddy’s model possesses merit of simplicity and efficiency, so a Reddy-type higher-order zig-zag model is constructed by utilizing the proposed zig-zag function (ZZF). Instead of the standard finite element formulation using the principle of minimum potential energy, the three-field Hu–Washizu (HW) mixed variational principle is employed to acquire the finite element formulation which can meet the harmonious conditions of transverse shear stress at the interface of adjacent layers. By investigating buckling behaviors of hybridized structures, performance of the proposed finite element formulation is appraised by comparing with the results obtained from the three-dimensional (3D) model as well as other models. Effect of boundary conditions (BCs), material properties, and span-to-thickness ratio on the buckling loads is also studied in detail. Numerical results show that buckling loads of hybridized structures are significantly impacted by the chosen parameters. The results acquired from proposed model are in very good agreement with those obtained from the layerwise (LW) model and the 3D finite element results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.