Abstract
We study the stability of laminar flows in a sheet of fluid (open channel) down an incline with constant slope angle $$\beta $$. The basic motion is the velocity field $$U(z) \mathbf{i}$$, where z is the coordinate of the axis orthogonal to the channel, and $$\mathbf{i}$$ is the unit vector in the direction of the flow. U(z) is a parabolic function which vanishes at the bottom of the channel and whose derivative with respect to z vanishes at the top. We study the linear stability, and prove that the basic motion is linearly stable for any Reynolds number. We also study the nonlinear Lyapunov stability by solving the Orr equation for the associated maximum problem. As in Falsaperla et al. (Phys Rev E 100(1):013113, 2019. https://doi.org/10.1103/PhysRevE.100.013113) we finally study the nonlinear stability of tilted rolls. This work is a preliminary investigation to model debris flows down an incline (Introduction to the physics of landslides. Lecture notes on the dynamics of mass wasting. Springer, Dordrecht, 2011. https://doi.org/10.1007/978-94-007-1122-8).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.