Abstract
We consider Kalman filtering in a network with packet losses, and use a two state Markov chain to describe the normal operating condition of packet delivery and transmission failure. Based on the sojourn time of each visit to the failure or successful packet reception state, we analyze the behavior of the estimation error covariance matrix and introduce the notion of peak covariance, as an estimate of filtering deterioration caused by packet losses, which describes the upper envelope of the sequence of error covariance matrices { P t , t ⩾ 1 } for the case of an unstable scalar model. We give sufficient conditions for the stability of the peak covariance process in the general vector case, and obtain a sufficient and necessary condition for the scalar case. Finally, the relationship between two different types of stability notions is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.