Abstract

Elastomeric bearings used as seismic isolators are susceptible to a buckling type of instability similar to that of structural columns. The buckling load and buckling behaviour can be determined from an elastic analysis of the isolator modelled as a continuous composite column with bending and shear flexibility; this analysis cannot be used, however, to assess the post-buckling behaviour or the stability of the isolator at large horizontal displacements. By using a two-spring rigid link model that considers large angles without using linear approximations, it is possible to predict the post-buckling behaviour of an isolator. Using the simple closed form expression, this paper will model three aspects of post-buckled isolator behaviour: the dependence of horizontal stiffness on vertical load, the stability at large horizontal displacements, and the increase of horizontal displacement with respect to axial load and vertical displacement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call