Abstract

Application of fractional calculus representations, shortly termed as fractional constitute relations becomes an effective and powerful technique to characterize the rheological behavior of viscoelastic materials. Research on fractional oscillators provides a novel approach to deal with viscoelastically damped structures. This paper firstly investigates the memory effects or historical effects on dynamical responses of fractional oscillators via numerical simulations. Then the stability of initialization response is proved based on the unit impulse response function and the Lyapunov stability theorem for fractional differential equations. The main conclusion in this paper is that the stability of initialization responses of fractional oscillators is irrelevant to initial conditions or prehistory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.