Abstract

The stability of metal-semiconductor field-effect-transistors (MESFETs) with silver oxide Schottky gates on In-Ga-Zn-O (IGZO) channels, grown by mist chemical-vapor-deposition, was examined under different combinations of positive and negative bias, illumination, and temperature stress. These devices were remarkably stable, even under the most severe condition of negative-bias-illumination-temperature-stress (NBITS), where the threshold voltage shift after 10 h NBITS was only +0.12 V and was mainly attributed to a decrease in the carrier density of the channel. The stability of these IGZO MESFETs is associated with the use of a conducting Schottky gate that significantly reduces charge trapping at the gate-channel interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.