Abstract

The stability of spherically imploding shock waves is systematically investigated in this letter. The basic state is Guderley and Landau's unsteady self-similar solution of the implosion of a spherical shock wave. The stability analysis is conducted by combining Chandrasekhar's approach to the stability of a viscous liquid drop with Zel'dovich's approach to the stability of spherical flames. The time-dependent amplitudes of the perturbations are obtained analytically by using perturbation method. The relative amplification and decay of the amplitudes of perturbations decides the stability/instability of the spherical imploding shock waves. It is found that the growth rate of perturbations is not in exponential form and near the collapse phase of the shocks, the spherically imploding shock waves are relatively stable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.