Abstract
Since the identification of the antisense protein of HTLV-2 (APH-2) and the demonstration that APH-2 mRNA is expressed in vivo in most HTLV-2 carriers, much effort has been dedicated to the elucidation of similarities and/or differences between APH-2 and HBZ, the antisense protein of HTLV-1. Similar to HBZ, APH-2 negatively regulates HTLV-2 transcription. However, it does not promote cell proliferation. In contrast to HBZ, APH-2 half-life is very short. Here, we show that APH-2 is addressed to PML nuclear bodies in T-cells, as well as in different cell types. Covalent SUMOylation of APH-2 is readily detected, indicating that APH-2 might be addressed to the PML nuclear bodies in a SUMO-dependent manner. We further show that silencing of PML increases expression of APH-2, while expression of HBZ is unaffected. On the other hand, SUMO-1 overexpression leads to a specific loss of APH-2 expression that is restored upon proteasome inhibition. Furthermore, the carboxy-terminal LAGLL motif of APH-2 is responsible for both the targeting of the protein to PML nuclear bodies and its short half-life. Taken together, these observations indicate that natural APH-2 targeting to PML nuclear bodies induces proteasomal degradation of the viral protein in a SUMO-dependent manner. Hence, this study deciphers the molecular and cellular bases of APH-2 short half-life in comparison to HBZ and highlights key differences in the post-translational mechanisms that control the expression of both proteins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.