Abstract

Let us now detail the stability properties of an Ekman layer introduced in Part I, page 11. First we will recall how to compute the critical Reynolds number. Then we will describe briefly what happens at larger Reynolds numbers. The first step in the study of the stability of the Ekman layer is to consider the linear stability of a pure Ekman spiral of the form where U∞ is the velocity away from the layer and ζ is the rescaled vertical component ζ = x3/√εν. The corresponding Reynolds number is Let us consider the Navier–Stokes–Coriolis equations, linearized around uE The problem is now to study the (linear) stability of the 0 solution of the system (LNSCε). If u=0 is stable we say that uE is linearly stable, if not we say that it is linearly unstable. Numerical results show that u=0 is stable if and only if Re<Rec where Rec can be evaluated numerically. Up to now there is no mathematical proof of this fact, and it is only possible to prove that 0 is linearly stable for Re<Re1 and unstable for Re>Re2 with Re1<Rec<Re2, Re1 being obtained by energy estimates and Re2 by a perturbative analysis of the case Re=∞. We would like to emphasize that the numerical results are very reliable and can be considered as definitive results, since as we will see below, the stability analysis can be reduced to the study of a system of ordinary differential equations posed on the half-space, with boundary conditions on both ends, a system which can be studied arbitrarily precisely, even on desktop computers (first computations were done in the 1960s by Lilly).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.