Abstract
We investigate the classical stability of the higher-dimensional Schwarzschild black holes against linear perturbations, in the framework of a gauge-invariant formalism for gravitational perturbations of maximally symmetric black holes, recently developed by the authors. The perturbations are classified into the tensor, vector, and scalar-type modes according to their tensorial behaviour on the spherical section of the background metric, where the last two modes correspond respectively to the axial- and the polar-mode in the four-dimensional situation. We show that, for each mode of the perturbations, the spatial derivative part of the master equation is a positive, self-adjoint operator in the $L^2$-Hilbert space, hence that the master equation for each tensorial type of perturbations does not admit normalisable negative-modes which would describe unstable solutions. On the same Schwarzschild background, we also analyse the static perturbation of the scalar mode, and show that there exists no static perturbation which is regular everywhere outside the event horizon and well-behaved at spatial infinity. This checks the uniqueness of the higher-dimensional spherically symmetric, static, vacuum black hole, within the perturbation framework. Our strategy for the stability problem is also applicable to the other higher-dimensional maximally symmetric black holes with non-vanishing cosmological constant. We show that all possible types of maximally symmetric black holes (thus, including the higher-dimensional Schwarzschild-de Sitter and Schwarzschild-anti-de Sitter black holes) are stable against the tensor and the vector perturbations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.