Abstract
The present paper is devoted to the issue how the critical load of some heterogeneous beams with three supports can be determined by using Green functions. The stability problems of these beams are equivalent to three-point boundary value problems, paired with homogeneous boundary conditions. If the Green functions of these boundary value problems are known, the eigenvalue problems that provide the critical load can be transformed into eigenvalue problems governed by homogeneous Fredholm integral equations. The later eigenvalue problems can be reduced to algebraic eigenvalue problems which then can be solved numerically with effective algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.