Abstract

Abstract In order to explain the observed behaviour of helium platelets, which grow and then collapse into clusters of smaller aggregates, a theoretical model is developed to describe the total energy of a platelet. The model is based partly on the results of atomistic computer simulations. The variation of the total energy gives information regarding the platelet stability and is calculated in both a numerical and an analytical way. It is shown that small platelets are stable and that, once a critical radius is attained, the platelet becomes unstable and a transformation into a group of smaller aggregates takes place. The theoretical model can also explain the fact that two-dimensional helium aggregates are observed to be more stable in b.c.c. than in f.c.c. structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.