Abstract

We study the double diffusive convection (DDC) in porous media through linear stability analysis (LSA) and direct numerical simulations (DNS). Unlike the previous studies that assume static solutal or thermal fields, the developed model is able to capture the transient behavior of both fields. We show that under the assumption of static field, the role of Lewis number cannot be distinguished. Under transient fields, we conclude that higher Lewis numbers result in earlier instability of the boundary layers. Moreover, the effect of viscosity contrast is explained in terms of the mobility of the boundary layer. The DNS results confirm the validity of LSA predictions. We also obtain the critical Rayleigh number and show that in the presence of viscosity contrast, it can be much smaller than the conventional limit of 4π2. This study provides a better understanding of the transient nature of DDC in the presence of viscosity variations. © 2017 American Institute of Chemical Engineers AIChE J, 63: 2471–2482, 2017

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.