Abstract

The stability of a recently proposed general relativistic model of galaxies is studied in some detail. This model is a general relativistic version of the well-known Miyamoto-Nagai model that represents well a thick galactic disc. The stability of the disc is investigated under a general first-order perturbation keeping the space-time metric frozen (no gravitational radiation is taken into account). We find that the stability is associated with the thickness of the disc. We find that flat galaxies have more non-stable modes than the thick ones, i.e. flat galaxies have a tendency to form more complex structures like rings, bars and spiral arms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.