Abstract

This study focuses on the investigation of the extent of the γ-valerolactone (GVL) hydrolysis forming an equilibrium with 4-hydroxyvaleric acid (4-HVA) in aqueous solutions over a wide pH range. The hydrolysis of a 50 wt% GVL solution to 4-HVA (3.5 mol%) was observed only at elevated temperatures. The addition of sulfuric acid (0.2 × 10–5 wt% to 6 wt%) at elevated temperatures (150–180 °C) and reaction times between 30 and 180 min caused the formation of 4 mol% 4-HVA. However, with decreasing acidity, the 4-HVA remained constant at about 3 mol%. The hydrolysis reactions in alkaline conditions were conducted at a constant time (30 min) and temperature (180 °C) with the variation of the NaOH concentration (0.2 × 10–6 wt% to 7 wt%). The addition of less than 0.2 wt% of NaOH resulted in the formation of less than 4 mol% of sodium 4-hydroxyvalerate. A maximum amount of 21 mol% of 4-HVA was observed in a 7 wt% NaOH solution. The degree of decomposition after treatment was determined by NMR analysis. To verify the GVL stability under practical conditions, Betula pendula sawdust was fractionated in 50 wt% GVL with and without the addition of H2SO4 or NaOH at 180 °C and a treatment time of 120 min. The spent liquor was analyzed and a 4-HVA content of 5.6 mol% in a high acidic (20 kg H2SO4/t wood) and 6.0 mol% in an alkaline (192 kg NaOH/t wood) environment have been determined.

Highlights

  • The worldwide economy is currently highly dependent on the use of fossil raw materials

  • The spectra were referenced against the 1H peaks of the deuterated solvents and the concentration of the green solvents c-valerolactone (GVL) and 4-hydroxyvaleric acid (4-HVA) compounds were determined related to the defined concentration of the standard 1,3,5-trimethoxybenzene (C 99 wt%)

  • GVL hydrolysis to 4-HVA under the specific conditions of a biomass fractionation process was investigated

Read more

Summary

Introduction

The worldwide economy is currently highly dependent on the use of fossil raw materials. Various drawbacks associated with the exploitation of fossil resources, such as non-renewability, pollution, insecurity, and the massive climate change crisis, have promoted the transition to a more sustainable bioeconomy, centered on lignocellulosic biomass. Lignocellulosic material is an abundant, renewable, and relatively cheap carbonbased material. Cellulose, with its unique properties, represents the most important component of fractionated lignocellulose (Henriksson and Lennholm 2009) and is mainly processed into paper-grade and dissolving-grade pulps via chemical pulping. The global annual production of chemical pulp is more than 144 Mton (Statista, 2021). The segment for dissolving pulp forms a fast-growing niche market with an annual production of 10.2 million tons in 2019 (Engelhardt 2020). Dissolving pulp is characterized by a high a-cellulose content ([ 90%) and targeted for higher-valued applications such as regenerated cellulose, cellulose esters or ethers, nano- or microcrystalline cellulose

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call