Abstract
Two fully discrete methods are investigated for simulating the distributed-order sub-diffusion equation in Caputo’s form. The fractional Caputo derivative is approximated by the Caputo’s BDF1 (called L1 early) and BDF2 (or L1-2 when it was first introduced) approximations, which are constructed by piecewise linear and quadratic interpolating polynomials, respectively. It is shown that the first scheme, using the BDF1 formula, possesses the discrete minimum-maximum principle and nonnegativity preservation property such that it is stable and convergent in the maximum norm. The method using the BDF2 formula is shown to be stable and convergent in the discrete H1 norm by using the discrete energy method. For problems of distributed order within a certain region, the method is also proven to preserve the discrete maximum principle and nonnegativity property. Extensive numerical experiments are provided to show the effectiveness of numerical schemes, and to examine the initial singularity of the solution. The applicability of our numerical algorithms to a problem with solution which lacks the smoothness near the initial time is examined by employing a class of power-type nonuniform meshes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.