Abstract

We consider a class of forced continuous-time Lur'e systems obtained by applying nonlinear feedback to a higher-order linear differential equation which defines an input-output system in the sense of behavioural systems theory. This linear system directly relates the input and output signals and does not involve any internal, latent or state variables. A stability theory subsuming results of circle criterion type is developed, including criteria for input-to-output stability and strong integral input-to-output stability, concepts which are very much reminiscent of input-to-state stability and strong integral input-to-state stability, respectively. The methods used in the paper combine ideas from the behavioural approach to systems and control, absolute stability theory and input-to-state stability theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call