Abstract

Frequency responses of multi-degree-of-freedom mechanical systems with weak forcing and damping can be studied as perturbations from their conservative limit. Specifically, recent results show how bifurcations near resonances can be predicted analytically from conservative families of periodic orbits (nonlinear normal modes). However, the stability of forced-damped motions is generally determined a posteriori via numerical simulations. In this paper, we present analytic results on the stability of periodic orbits that perturb from conservative nonlinear normal modes. In contrast with prior approaches to the same problem, our method can tackle strongly nonlinear oscillations, high-order resonances, and arbitrary types of non-conservative forces affecting the system, as we show with specific examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.