Abstract
Filament-wound flexible pipes are widely used to transport fluid in pipeline systems, proved extremely useful in marine engineering. The hyperbolic flexible pipes have good vibration suppression performance, but they are easily deformed under internal pressure. This paper focuses on the stability of hyperbolic flexible pipes based on the composite Reissner shell theory and the transfer-matrix method. The nonlinear stretch of the reinforced filament and the fiber bridge effect are considered in the model. The calculation results show that a large winding angle reduces the deformation and the meridional stress. The available initial winding angle is limited by the geometry and the slippage coefficient of flexible pipe. The reinforced filament of high tensile modulus will reduce the deformation of the pipe. Compared with the geodesic winding trajectory, non-geodesic winding trajectories improves the stability of the pipe. The theoretical result is verified by the finite element analysis. The investigation method and results present in this paper will guide the design and optimization of more novel flexible pipes in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.