Abstract
The stability of an extemporaneously prepared preservative-free prochlorperazine 5-mg/mL nasal spray was evaluated. The preservative-free prochlorperazine nasal spray was prepared by adding 250 mg of prochlorperazine edisylate to 50 mL of citrate buffer in a low-density polyethylene nasal spray bottle. A stability-indicating high-performance liquid chromatography (HPLC) method was developed and validated using the major degradant prochlorperazine sulfoxide and by performing forced-degradation studies. For chemical stability studies, 3 100-μL samples of the preservative-free prochlorperazine from 5 nasal spray bottles stored at room temperature were collected at days 0, 20, 30, 45, and 60 and were assayed in triplicate using the stability-indicating HPLC method. Microbiological testing involved antimicrobial effectiveness testing based on United States Pharmacopeia (USP) chapter 51 and quantitative microbiological enumeration of aerobic bacteria, yeasts, and mold based on USP chapter 61. Samples for microbiological testing were collected at days 0, 30, and 60. The stability-indicating HPLC method clearly identified the degradation product prochlorperazine sulfoxide without interference from prochlorperazine. All tested solutions retained over 90% of the initial prochlorperazine concentration for the 60-day study period. There were no detectable changes in color, pH, and viscosity in any sample. There was no growth of bacteria, yeast, and mold for 60 days in all samples tested. An extemporaneously prepared preservative-free nasal spray solution of prochlorperazine edisylate 5 mg/mL was physically, chemically, and microbiologically stable for 60 days when stored at room temperature in low-density polyethylene bottles.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American journal of health-system pharmacy : AJHP : official journal of the American Society of Health-System Pharmacists
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.