Abstract

AbstractIn this paper, we study the stability in the Lyapunov sense of the equilibrium solutions of discrete or difference Hamiltonian systems in the plane. First, we perform a detailed study of linear Hamiltonian systems as a function of the parameters. In particular we analyze the regular and the degenerate cases. Next, we give a detailed study of the normal form associated with the linear Hamiltonian system. At the same time we obtain the conditions under which we can get stability (in linear approximation) of the equilibrium solution, classifying all the possible phase diagrams as a function of the parameters. After that, we study the stability of the equilibrium solutions of the first order difference system in the plane associated with mechanical Hamiltonian systems and Hamiltonian systems defined by cubic polynomials. Finally, we point out important diòerences with the continuous case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.