Abstract

Seagrass meadows are generally considered stable although few studies have specified and tested this statement. On the basis of a large monitoring dataset from Danish coastal waters, we aimed to test whether the stability of deep eelgrass populations changes along a eutrophication gradient extending from inner bays over outer bays to open coastal waters. We defined stability in terms of the ‘stability properties’ of ‘constancy’, ‘resilience’, and/or ‘persistence’. Our data allowed us to investigate the stability property constancy expressed as temporal variability in eelgrass depth limits over a time scale of 10 years. We hypothesised that colonisation depths were large and relatively constant along open coasts because of low and relatively constant levels of nutrients and turbidity. Conversely, colonisation depths were hypothesised to be low and variable in protected bays due to higher and more variable levels of nutrients and turbidity. We found that depth limits increased from inner bays towards open coastal waters, matching declines in nutrient concentration and increases in water clarity and oxygen concentration. Stability expressed as constancy of depth limits did not differ significantly between habitat types, and neither did stability of physicochemical variables. However, when data from all habitat types were analysed together, they showed that eelgrass populations at the depth limit were significantly more constant and thus, in this respect, more stable when occurring in deep waters as compared to shallow waters. Areas of good water quality may thus obtain the double benefit of deeper-growing and more stable eelgrass populations. The most likely reason why this pattern did not appear at habitat-type level is that the habitat types studied represented wide spatial variation in water quality and depth limit. We conclude that the question of whether eelgrass populations are stable depends on the stability property and the ecological situation in question. Populations may be considered unstable in terms of inter-annual variation but stable in terms of long-term persistence. Therefore, the common statement that eelgrass populations are stable is not universally true.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.