Abstract

Global asymptotic stability of general dynamical networks with non-identical nodes is studied by introducing multiple V -Lyapunov functions. In such a network, the coupling strength, inner coupling matrix and outer coupling matrix are all allowed to be state-dependent and nonlinear. A stability criterion is proposed in terms of matrix norms and eigenvalues of some lower-dimensional matrices. Based on this criterion, an optimization problem is formed whose solution can be used to test global asymptotic stability. We also study the problem of how to achieve global asymptotic stability by design of controllers under the scheme of multiple V -Lyapunov functions. The control action is regarded as a re-shape of outer coupling topology and the associated controllers are designed. In particular, a method of adding or removing a certain number of links is proposed. Stability analysis of coupled non-identical Lorenz systems and a design example are also given to illustrate the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.