Abstract

The recent years witnessed significant advances in nanopore technology and the DNA sequencing. One of the efficient methods for DNA sequencing is denaturation mapping of the DNA molecule that is trapped inside a cylindrical geometry. In this paper, we investigate the denaturation of homogeneous as well as heterogeneous DNA molecules which are confined in a conical as well as cylindrical geometric space. For the conically shaped confinement, we study the effect of the cone angle and the pore width on the melting profile of homogeneous DNA molecules. Similarly, for the cylindrically shaped confinement, we investigate the effect of the cylinder diameter on the melting profile of homogeneous and heterogeneous DNA molecules. We consider the conditions when DNA is partially inside the confined space and partially outside the confined space. For the investigation, we vary the fraction of base pairs that remains inside the space and calculate the denaturation profile of DNA molecules in each condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.