Abstract

The idea of using Feed-Forward Neural Networks (FFNNs) as regression functions for Nonlinear AutoRegressive eXogenous (NARX) models, leading to models herein named Neural NARXs (NNARXs), has been quite popular in the early days of machine learning applied to nonlinear system identification, owing to their simple structure and ease of application to control design. Nonetheless, few theoretical results are available concerning the stability properties of these models. In this paper we address this problem, providing a sufficient condition under which NNARX models are guaranteed to enjoy the Input-to-State Stability (ISS) and the Incremental Input-to-State Stability ({\delta}ISS) properties. This condition, which is an inequality on the weights of the underlying FFNN, can be enforced during the training procedure to ensure the stability of the model. The proposed model, along with this stability condition, are tested on the pH neutralization process benchmark, showing satisfactory results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.