Abstract
This paper studies the stability issue for discrete-time delayed impulsive systems (DDIS). The DDIS model is formulated from a discrete-time delayed system with impulses. By using the matrix spectrum theory, the estimates of solution with growth exponent are derived for delayed difference inequalities. Based on these results, two types of criteria on exponential stability with an estimated convergence rate have been established for DDIS. The first type investigates the effect of destabilising impulses, while the second is for the case in which the impulses stabilise the unstable discrete-time delayed systems. As the application, the stability results are used to solve the multi-tracking issue for discrete-time dynamical networks by mixed impulsive networked control (MINC), in which the impulsive control signals are transmitted via a communication network. The effect of data dropout of impulsive control signals is also investigated and the maximal allowable dropout rate is estimated for the designed MINC. Finally, one example with numerical simulations is worked out for illustration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.