Abstract
The near-face stability of D-shaped tunnels excavated in a MohrCoulomb material subjected to anisotropic in situ stress conditions is investigated in the present study. The construction of the intake tunnel of the Darlington Nuclear Generating Station is analyzed using three-dimensional elasto-plastic finite element analysis. The induced displacement and stresses around the tunnel opening as the face advances are compared to the field measurements recorded during the tunnel excavation. The effect of rock mass strength reduction on the tunnel deformation, face stability, and distribution of stresses at the tunnel circumference is investigated for different in situ stress conditions. When the ratio of rock mass strength to overburden pressure falls below 0.5, excessive deformation occurrs and squeezing of the rock mass becomes a problem that can cause instability of both the tunnel circumference and the face.Key words: weak rock, tunnelling, horizontal stresses, three-dimensional, finite element, excavation, face stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.