Abstract

Orthotropic cylindrical shell panels under dynamic loading (the load has a linear time dependency) are examined in this paper. Relationships of a mathematical model of their deformation are presented in view of the geometric nonlinearity, transverse shears and orthotropy of the material. The Kantorovich method is applied to form a system of ordinary differential equations. The derived system is solved by the Rosenbrock method. The stability of several types of orthotropic panels of modern materials (fiberglass, carbon fiber reinforced plastic, etc.) is studied and critical load values are obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.