Abstract

In this work, stability of thin flexible Bernoulli-Euler beams is investigated taking into account the geometric non-linearity as well as a type and intensity of the temperature field. The applied temperature field T(x,z) is yielded by a solution to the 2D Laplace equation solved for five kinds of thermal boundary conditions, and there are no restrictions put on the temperature distribution along the beam thickness. Action of the temperature field on the beam dynamics is studied with the help of the Duhamel theory, whereas the motion of the beam subjected to the thermal load is yielded employing the variational principles.The heat transfer (Laplace equation) is solved with the use of the finite difference method (FDM) of the third-order accuracy, while the integrals along the beam thickness defining the thermal stress and moments are computed using Simpson's method. Partial differential equations governing the beam motion are reduced to the Cauchy problem by means of application of FDM of the second-order accuracy. The obtained ordinary differential equations are solved with the use of the fourth-order Runge-Kutta method.The problem of numerical results convergence versus a number of beam partitions is investigated. A static solution for a flexible Bernoulli-Euler beam is obtained using the dynamic approach based on employment of the relaxation/set-up method.Novel stability loss phenomena of a beam under the thermal field are reported for different beam geometric parameters, boundary conditions, and the temperature intensity. In particular, it has been shown that stability of the flexible beam during heating the beam surface essentially depends on the beam thickness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call