Abstract

It was shown previously that the anticancerous cytotoxic oxygenated triterpenes, cucurbitacin E (Cuc E) and its deacetylated form, cucurbitacin I (Cuc I), interacted differently with human serum albumin. In this study, the biochemical stability of Cuc E was investigated in vitro by reverse-phase high performance liquid chromatography. The hydrolysis rate in acidic and alkaline solutions, and in enzymatic conditions in human plasma and in purified plasma esterase solutions of butyrylcholinesterase and albumin, was compared with that measured in phosphate buffer saline (pH 7.4). Cuc E hydrolysis was detected in all the in vitro tests, but the extent of hydrolysis varied according to the different enzymatic and non-enzymatic conditions. A remarkable rapid hydrolysis of Cuc E was detected in acidic and alkaline solutions. A significant rate of hydrolysis of Cuc E was monitored in human plasma and was associated with the detection of Cuc I. The stability of Cuc E was greatly enhanced in the presence of albumin. However, purified butyrylcholinesterase had no effect on Cuc E stability. Among specific inhibitors of plasma esterases, only EDTA increased Cuc E stability, suggesting that paraoxonase is the human plasma esterase involved in the hydrolysis of Cuc E.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.