Abstract
Applications of ceramic materials usually involve thermal stresses that can reduce their lifetime considerably. One of the most relevant mechanical properties for evaluating thermal shock damage resistance is the energy of fracture. In order to obtain this property, a stable crack growth regimen must be achieved throughout the test. In this paper, three-point bending tests are analyzed to determine how machine stiffness influences load point displacement rates. Understanding the differences between recorded and adjusted displacement rates is important in determining the stability of crack growth. This statement is corroborated by experimental data on sintered high-alumina, low-cement refractory castables.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.