Abstract

A plane-parallel convective flow in a vertical layer between boundaries maintained at different temperatures becomes unstable when the Grashof number reaches a critical value (see [1]). In [2, 3] the effect of high-frequency harmonic vibration in the vertical direction on the stability of this flow was investigated. The presence of vibration in a nonisothermal fluid leads to the appearance of a new instability mechanism which operates even under conditions of total weightlessness [4]. As shown in [2, 3], the interaction of the usual instability mechanisms in a static gravity field and the vibration mechanism has an important influence on the stability of convective flow. In this paper the flow stability is considered for an arbitrary direction of the vibration axis in the plane of the layer and the stability characteristics with respect to three-dimensional normal perturbations are determined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call