Abstract

An accurate nonlinear hygrothermal-electro-elastic (HTEE) buckling analysis of piezoelectric fiber-reinforced composite cylindrical shells subjected to the coupled loading effects of axial compression and hydrostatic pressure was established by considering the nonuniform prebuckling effect. Nonlinear governing equations were derived based on higher-order shear deformation theory and Novozhilov’s nonlinear shell theory. Accurate critical buckling stresses and pressures and explicit buckling modes for both axisymmetric and nonaxisymmetric buckling were obtained by the Galerkin method. A comparison between the new prediction and existing results is presented and excellent agreement is reported. A comprehensive parametric study of geometric parameters, end conditions, distribution patterns, and hygrothermal-electric multiphysical fields on the buckling behavior of HTEE composite cylindrical shell is also analyzed and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.