Abstract

We perform simulations of relativistic binary stars in post-Newtonian gravity to investigate their dynamical stability prior to merger against gravitational collapse in a tidal field. In general, our equations are only strictly accurate to first post-Newtonian order, but they recover full general relativity for spherical, static stars. We study both corotational and irrotational binary configurations of identical stars in circular orbits. We adopt a soft, adiabatic equation of state with $\ensuremath{\Gamma}=1.4,$ for which the onset of instability occurs at a sufficiently small value of the compaction $M/R$ that a post-Newtonian approximation is quite accurate. For such a soft equation of state there is no innermost stable circular orbit, so that we can study arbitrarily close binaries. This choice still allows us to study all the qualitative features exhibited by any adiabatic equation of state regarding stability against gravitational collapse. We demonstrate that, independent of the internal stellar velocity profile, the tidal field from a binary companion stabilizes a star against gravitational collapse.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.