Abstract

Silver nanoparticles (AgNPs) are present in the environment and a number of ecotoxicology studies have shown that AgNPs might be highly toxic. Nevertheless, there are little data on their stability in toxicology media. This is an important issue as such dynamic changes affect exposure dose and the nature of the toxicant studied and have a direct impact on all (eco)toxicology data. In this study, monodisperse citrate, PVP, and PEG coated AgNPs with a core size of approximately 10 nm were synthesized and characterized; their behavior was examined in standard OECD media used for Daphnia sp. acute and chronic tests (in the absence of Daphnia). Surface plasmon resonance, size, aggregation, and shape were monitored over 21 days, comparable to a chronic exposure period. Charge stabilized particles (citrate) were more unstable than sterically stabilized particles. Replacement of chloride in the media (due to concerns over chloride-silver interactions) with either nitrate or sulfate resulted in increased shape and dissolution changes. PVP-stabilized NPs in a 10-fold diluted OECD media (chloride present) were found to be the most stable, with only small losses in total concentration over 21 days, and no shape, aggregation, or dissolution changes observed and are recommended for exposure studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.