Abstract

Circular cylindrical shells made of steel are used in a large variety of civil engineering structures, e.g. in off-shore platforms, chimneys, silos, tanks, pipelines, bridge arches or wind turbine towers. They are often subjected to combined loading inducing membrane compressive and/or shear stress states which endanger the local structural stability (shell buckling). A comprehensive experimental and numerical investigation of cylindrical shells under combined loading has been performed which yielded a deeper insight into the real buckling behaviour under combined loading . Beyond that, it provided rules how to simulate numerically the realistic buckling behaviour by means of substitute geometric imperfections. A comparison with existing design codes for interactive shell buckling reveals significant shortcomings. A proposal for improved design rules is put forward.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call