Abstract

This study investigated the stability and characteristics of L-ascorbic acid (AA)-loaded chitosan (CS) nanoparticles during heat processing in aqueous solutions. AA-loaded CS nanoparticles were prepared by ionic gelation of CS with tripolyphosphate (TPP) anions. The smallest CS nanoparticles (170 nm) were obtained with a CS concentration of 1.5 mg/mL and a TPP concentration of 0.6 mg/mL. As the concentration of AA increased from 0.1 to 0.3 mg/mL, the particle size increased, while the zeta potential decreased, and the encapsulation efficiency of AA remained within a fixed range (10-12%). During heat processing at various temperatures, the size and zeta potential of the particles decreased rapidly in the first 5 min and then slowly fell to the regular range. At the beginning of the release profiles, the burst release-related stability of the surface increased with the temperature. Then, the release of the internal AA was constantly higher with a longer release time. Consequently, it was confirmed that the stability of AA-loaded CS nanoparticles was affected by temperature but that the internal stability was greater than the surface stability. These results demonstrate the stability of CS nanoparticles for AA during heat processing and suggest the possible use of AA-loaded CS nanoparticles to enhance antioxidant effects because of the continuous release of AA from CS nanoparticles in food processing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call