Abstract

The application of carbon nanotubes to produce cementitious composites has been extensively researched. However, the dispersion of this nanomaterial remains a technical limitation for its use. Thus, initially, this study assessed the stability of carboxyl-functionalized CNT on aqueous suspensions and simulated cement pore solution for 6 h through UV–visible spectroscopy. Subsequently, a CNT content of 0.1% by cement weight was incorporated into the cement pastes, and the compressive strength after 7, 14, 28, and 91 days was evaluated. In addition, the porosity of the CNT cementitious composites at 28 days of hydration was investigated by mercury intrusion porosimetry (MIP), and the microstructure was evaluated via scanning electron microscopy (SEM). The simulated cement pore solution’s alkaline environment affects the CNT stability, progressively reducing the dispersed CNT concentration over time. CNT reduced the cementitious matrix pores < 50 nm by 8.5%; however, it resulted in an increase of 4.5% in pores > 50 nm. Thus, CNT incorporation did not significantly affect the compressive strength of cement pastes. SEM results also suggested a high porosity of CNT cementitious composites. The CNT agglomeration trend in an alkaline environment affected the CNT performance in cement-based nanocomposites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.