Abstract

A numerical study using the Discontinuous Deformation Analysis (DDA) method is proposed to analyze the effect of the caisson sliding subjected to a hydrodynamic loading in the stability of the rear side of the caisson-type breakwater. The study takes into account the slope inclination of the breakwater as well as the contact between the armour units constituting the shoreward of the breakwater, where the contact stresses are imposed through a penalty method. A dimensionless displacement parameter, [Formula: see text], is defined to investigate the instability of armor units. The results of the simulation show that the shape of the armour units plays an important role in the stability of the breakwater, where the tetrapods and the acropods give better stability than the cubic shapes, with a clear superiority of the tetrapods. They also show that the reduction in the slope clearly contributes to the stability of caisson up to a slope of 1: 2, but below this ratio of 1: 2 this stability is no longer obvious. Furthermore, a new relation of the displacement of the armour units according to the slope is established.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.