Abstract

We present a theoretical analysis of the stability of screening-photovoltaic (SP) spatial solitons in biased photovoltaic-photorefractive materials in the case of neglecting the loss of the material and the effect of diffusion. When an incident optical beam is a SP soliton, this beam propagates along a linear path with its shape kept unchanged. When the maximum amplitude, width and functional form of an incident optical beam are slightly different from those of a SP soliton, the beam reshapes itself and tries to evolve into a solitary wave after a short distance. That is, these SP solitons are stable against small perturbations. However, optical beams that significantly differ from SP soliton solutions tend to experience larger cycles of compression and expansion, and their maximum amplitudes oscillate with propagation distances. The larger the perturbations, the stronger the oscillation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call