Abstract
The existence and stability of quiescent Bragg grating solitons in a dual-core fiber, where one core contains a Bragg grating with cubic–quintic nonlinearity, and the other is a linear are studied. The model admits two disjoint bandgaps when the relative group velocity in the linear core, c, is zero: one in the upper half and the other in the lower half of the system’s linear spectrum. In the general case (i.e., $$c\ne 0$$ ), a central gap (which is a genuine gap) is formed, while the lower and upper gaps overlap with one branch of continuous spectrum, and therefore, they are not genuine bandgaps. For quiescent solitons, exact analytical solutions are found in implicit form for $$c=0$$ . For nonzero c, soliton solutions are obtained numerically. The system supports two disjoint families (referred to as Type 1 and Type 2) of zero-velocity soliton solutions, separated by a border. Both Type 1 and Type 2 soliton solutions exist throughout the upper and lower gaps but not in the central gap. The stability of both soliton families is investigated by means of systematic numerical simulations. It is found that Type 2 solitons are always unstable and are destroyed upon propagation. On the other hand, unstable Type 1 solitons may either decay into radiation or radiate some energy and evolve into a moving Type 1 soliton. Also, in the case of Type 1 solitons, we have identified stable regions in the plane of quintic nonlinearity and frequency. The influence of coupling coefficient and the relative group velocity in the linear core on the stability of solitons are analyzed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.