Abstract
Despite their many favorable qualities, the marginal stability of biocatalysts in many types of reaction media often has prevented or delayed their implementation for industrial-scale synthesis of fine chemicals and pharmaceuticals. Consequently, there is great interest in understanding effects of solution conditions on protein stability, as well as in developing strategies to improve protein stability in desired reaction media. Recent methods include novel chemical modifications of protein, lyophilization in the presence of additives, and physical immobilization on novel supports. Rational and combinatorial protein engineering techniques have been used to yield unmodified proteins with exceptionally improved stability. Both have been aided by the development of computational tools and structure-guided heuristics aimed at reducing library sizes that must be generated and screened to identify improved mutants. The number of parameters used to indicate protein stability can complicate discussions and investigations, and care should be taken to identify whether thermodynamic or kinetic stability limits the observed stability of proteins. Although the useful lifetime of a biocatalyst is dictated by its kinetic stability, only 6% of protein stability studies use kinetic stability measures. Clearly, more effort is needed to study how solution conditions impact protein kinetic stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.