Abstract
Benzotriazole derivatives form very strong bonds with transition metals, and are the most widely used type of industrial corrosion inhibitor. Some benzotriazole derivatives have been implicated as hormone regulators which also carry the ability to induce uncoupling responses or otherwise inhibit respiration processes in some microorganisms. However, the mechanisms associated with benzotriazole toxicity and inhibition are unknown. Using Differential Pulse Polarography, the stability constants of commercially significant corrosion inhibitors, 4-and 5-methylbenzotriazole, coordinated with free Cu (II) and Co (III), were determined to be 1015 and 108, respectively. Polarographic analyses were extended to confirm that methylbenzotriazole also binds the copper center(s) in the ubiquitous enzyme superoxide dismutase, and the Corrin site in the coenzyme cobalamin (vitamin B12). These results suggest that the metal-chelating ability of this unique class of compounds may confer inhibition to certain enzyme systems.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOP Conference Series: Materials Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.