Abstract
We develop a new approach and employ it to establish the global existence and nonlinear structural stability of attached weak transonic shocks in steady potential flow past three-dimensional wedges; in particular, the restriction that the perturbation is away from the wedge edge in the previous results is removed. One of the key ingredients is to identify a "good" direction of the boundary operator of a boundary condition of the shock along the wedge edge, based on the non-obliqueness of the boundary condition for the weak shock on the edge. With the identification of this direction, an additional boundary condition on the wedge edge can be assigned to make sure that the shock is attached on the edge and linearly stable under small perturbation. Based on the linear stability, we introduce an iteration scheme and prove that there exists a unique fixed point of the iteration scheme, which leads to the global existence and nonlinear structural stability of the attached weak transonic shock. This approach is based on neither the hodograph transformation nor the spectrum analysis, and should be useful for other problems with similar difficulties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.