Abstract

The flux reconstruction is a framework of high order semidiscretisations used for the numerical solution of hyperbolic conservation laws. Using a reformulation of these schemes relying on summation-by-parts (SBP) operators and simultaneous approximation terms, artificial dissipation/spectral viscosity operators and connections to modal filtering are investigated. Firstly, the discrete viscosity operators are studied for general SBP bases, stressing the importance of the correct implementation in order to get both conservative and stable approximations. Starting from L2 stability for scalar conservation laws, the results are extended to entropy stability for hyperbolic systems and supported by numerical experiments. Furthermore, the relation to modal filtering is recalled and several possibilities to apply filters are investigated, both analytically and numerically. This analysis serves to single out a unique way to apply modal filters in numerical methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call