Abstract

A cube of incompressible neo-Hookean material undergoes a pure homogeneous deformation and is held in equilibrium by three specified pairs of equal and opposite forces, two of which are the same, applied normally to its faces and uniformly distributed over them. The possible equilibrium states are determined and the stability of each is studied with respect to arbitrary superposed infinitesimal deformations. The stability limits are found to be different from those obtained when only infinitesimal deformations having the same principal directions as those of the basic equilibrium state are considered. The differences arise from rotational and shearing types of instabilities that may occur in the general case. A critical inference is drawn concerning the nature of the dead loading conditions employed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call