Abstract

The mean flow and stability characteristics of laser absorption phenomena in a choked converging-diverging nozzle are considered. Calculations are presented for a given nozzle geometry and a series of laser intensities. Gas absorptivities corresponding to a hydrogen-cesium mixture are used with different initial temperatures being selected to investigate the effects of changes in the shape of the k-T curve. Both stability and mean flow calculations are limited to the one-dimensional case. The mean flow results show a decrease in mass flow as laser power is increased, along with increasingly steep temperature profiles. Calculations span regions of partial and complete absorption. One region is found where multiple solutions exist. Local stability results indicate the u-c characteristic is the only unstable mode in the unheated case. Laser heat addition makes this mode more unstable and also destabilizes the u-characteristic. Numerical calculations of disturbance propagation show that the instability of the u-c disturbances is counteracted by their reflection to u + c disturbances at the upstream end. The growth of the u-disturbances is localized in regions where the temperature profile is steep and they are damped in other regions. The increasing destabilization that is observed with increased laser power is probably the reason for difficulty in obtaining converged mean flow solutions at high laser intensities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call