Abstract

This paper examines the stability of swirling flows in a non-homogeneous fluid. Density gradients are shown to produce two distinct kinds of instability. The first is the centrifugal instability (CTI) which mainly affects axisymmetric, short-axial-wavelength eigenmodes. The second is the Rayleigh–Taylor instability (RTI) which mainly affects non-axisymmetric, two-dimensional eigenmodes. These instabilities are described for a family of model flows for which the velocity law . This asymptotic analysis also confirms that shear has a stabilizing effect on RTI and that this instability is strictly analogous to the standard RTI obtained in the case where light fluid is situated below heavier fluid in the presence of gravity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.