Abstract
Several weightless experiment with supercritical fluids have shown that thermal boundary layers can be destabilized when submitted to a harmonic vibration. A study of the phenomenon is given here in a regular fluid during a sudden change of wall temperature in the presence of harmonic tangential vibrations and under weightlessness. A semi-infinite space is filled with a fluid and bounded by a flat wall oscillating in its plane. For this configuration, a state with the fluid velocity parallel to the wall is possible but this fluid motion does not influence the heat transfer. Then the propagation of thermal waves can be described by classical relations. The stability of this state is studied under the assumption of a “frozen” temperature profile. The vibration frequency is assumed to be high such that the viscous boundary layer thickness is small in comparison with the thermal boundary layer thickness. The calculations show that the instability develops when the thickness of the thermal boundary layer attains a critical value. The wavelength of the most dangerous perturbations is found to be about twice the critical thermal boundary layer thickness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.